Task 3.1A Summary

Status: ✅ COMPLETE Developer: Yin Date Completed: Current Session

Overview

Task 3.1A successfully implements the Context-Agent Bridge that transforms structured context from TwitterContextManager into LLM-friendly prompts for the agent runtime. This bridge enables context-aware tweet generation based on BILL's recent activity, market conditions, and social interactions.

What Was Built

1. PostingContextAdapter (agent/plugins/twitter/utils/PostingContextAdapter.ts)

The main adapter class that bridges TwitterContextManager output with agent runtime requirements.

Key Features:

  • Context Transformation: Converts raw PostingContext into FormattedAgentContext

  • Prompt Building: Generates context-aware prompts for different scenarios

  • Validation: Ensures context quality before use

  • Fallback Handling: Provides default context when data is insufficient

Main Methods:

// Transform context for agent consumption
formatForAgent(context: PostingContext): Promise<FormattedAgentContext>

// Build context-aware prompts
buildContextAwarePrompt(
  formattedContext: FormattedAgentContext, 
  promptType: 'autonomous_post' | 'reply' | 'quote_tweet'
): string

// Validate context quality
validateContext(context: PostingContext): { isValid: boolean; issues: string[] }

// Create fallback when context is poor
createFallbackContext(): FormattedAgentContext

2. Context Prompts Configuration (agent/plugins/twitter/config/contextPrompts.ts)

Sophisticated prompt templates that adapt based on context and LLM model.

Features:

  • Multiple Prompt Variations: Primary, fallback, and safe versions

  • Context-Aware Templates: Market reaction, mood-based, engagement posts

  • LLM-Specific Strategies: Different approaches for OpenAI, Anthropic, and open-source models

  • Dynamic Interpolation: Variables replaced with actual context values

Template Types:

  • systemPrompts: Base character establishment

  • post: Market reaction, mood post, engagement bait

  • replyPrompts: Positive, negative, and question responses

  • quotePrompts: Commentary templates

3. Comprehensive Test Suite

Unit Tests (PostingContextAdapter.test.ts):

  • Context formatting validation

  • Prompt generation testing

  • Edge case handling

  • Fallback context verification

Integration Tests (context-integration.test.ts):

  • End-to-end pipeline testing

  • Real TwitterContextManager integration

  • Performance benchmarking

  • LLM strategy testing

How It Works

Context Flow

Formatted Context Structure

Integration Instructions

For PostingService Integration (Nikolai's Task 3.1B)

Prompt Selection Based on Context

LLM Model Considerations

Performance Metrics

  • Average execution time: 138ms for full pipeline

  • Context formatting: ~10ms

  • Prompt building: ~5ms

  • Suitable for real-time generation: ✅

Testing

Run unit tests:

Run integration tests:

Next Steps

  1. Nikolai: Integrate into PostingService (Task 3.1B)

  2. Nikolai: Update twitter-plugin.ts orchestration (Task 3.2)

  3. Future: Enhance with more sophisticated context analysis

  4. Future: Add A/B testing for prompt variations

Key Files

  • agent/plugins/twitter/utils/PostingContextAdapter.ts - Main adapter implementation

  • agent/plugins/twitter/config/contextPrompts.ts - Prompt templates and strategies

  • agent/plugins/twitter/tests/PostingContextAdapter.test.ts - Unit tests

  • agent/plugins/twitter/tests/context-integration.test.ts - Integration tests

Notes

  • The adapter gracefully handles empty context (no timeline data)

  • Fallback context ensures the system always works

  • Prompt templates are designed to maintain BILL's character

  • LLM-specific strategies prevent content policy issues

  • Performance is optimized for real-time generation

Last updated